14 research outputs found

    Solving the Multi-activity Shift Scheduling Problem using Variable Neighbourhood Search

    Get PDF
    This paper presents a set of benchmarks instances for the multi-activity shift scheduling problem and the results produced using a variable neighbourhood search method. The data set is intended as a resource to generate and verify novel research on an important and practical but challenging problem. The variable neighbourhood search uses four different neighbourhood operators and can produce feasible solutions within short computation times

    Novel heuristic and metaheuristic approaches to the automated scheduling of healthcare personnel

    Get PDF
    This thesis is concerned with automated personnel scheduling in healthcare organisations; in particular, nurse rostering. Over the past forty years the nurse rostering problem has received a large amount of research. This can be mostly attributed to its practical applications and the scientific challenges of solving such a complex problem. The benefits of automating the rostering process include reducing the planner’s workload and associated costs and being able to create higher quality and more flexible schedules. This has become more important recently in order to retain nurses and attract more people into the profession. Better quality rosters also reduce fatigue and stress due to overwork and poor scheduling and help to maximise the use of leisure time by satisfying more requests. A more contented workforce will lead to higher productivity, increased quality of patient service and a better level of healthcare. Basically stated, the nurse rostering problem requires the assignment of shifts to personnel to ensure that sufficient employees are present to perform the duties required. There are usually a number of constraints such as working regulations and legal requirements and a number of objectives such as maximising the nurses working preferences. When formulated mathematically this problem can be shown to belong to a class of problems which are considered intractable. The work presented in this thesis expands upon the research that has already been conducted to try and provide higher quality solutions to these challenging problems in shorter computation times. The thesis is broadly structured into three sections. 1) An investigation into a nurse rostering problem provided by an industrial collaborator. 2) A framework to aid research in nurse rostering. 3) The development of a number of advanced algorithms for solving highly complex, real world problems

    Novel heuristic and metaheuristic approaches to the automated scheduling of healthcare personnel

    Get PDF
    This thesis is concerned with automated personnel scheduling in healthcare organisations; in particular, nurse rostering. Over the past forty years the nurse rostering problem has received a large amount of research. This can be mostly attributed to its practical applications and the scientific challenges of solving such a complex problem. The benefits of automating the rostering process include reducing the planner’s workload and associated costs and being able to create higher quality and more flexible schedules. This has become more important recently in order to retain nurses and attract more people into the profession. Better quality rosters also reduce fatigue and stress due to overwork and poor scheduling and help to maximise the use of leisure time by satisfying more requests. A more contented workforce will lead to higher productivity, increased quality of patient service and a better level of healthcare. Basically stated, the nurse rostering problem requires the assignment of shifts to personnel to ensure that sufficient employees are present to perform the duties required. There are usually a number of constraints such as working regulations and legal requirements and a number of objectives such as maximising the nurses working preferences. When formulated mathematically this problem can be shown to belong to a class of problems which are considered intractable. The work presented in this thesis expands upon the research that has already been conducted to try and provide higher quality solutions to these challenging problems in shorter computation times. The thesis is broadly structured into three sections. 1) An investigation into a nurse rostering problem provided by an industrial collaborator. 2) A framework to aid research in nurse rostering. 3) The development of a number of advanced algorithms for solving highly complex, real world problems

    First-order Linear Programming in a Column Generation Based Heuristic Approach to the Nurse Rostering Problem

    Get PDF
    A heuristic method based on column generation is presented for the nurse rostering problem. The method differs significantly from an exact column generation approach or a branch and price algorithm because it performs an incomplete search which quickly produces good solutions but does not provide valid lower bounds. It is effective on large instances for which it has produced best known solutions on benchmark data instances. Several innovations were required to produce solutions for the largest instances within acceptable computation times. These include using a fast first-order linear programming solver based on the work of Chambolle and Pock to approximately solve the restricted master problem. A low-accuracy but fast, first-order linear programming method is shown to be an effective option for this master problem. The pricing problem is modelled as a resource constrained shortest path problem with a two-phase dynamic programming method. The model requires only two resources. This enables it to be solved efficiently. A commercial integer programming solver is also tested on the instances. The commercial solver was unable to produce solutions on the largest instances whereas the heuristic method was able to. It is also compared against the state-of-the-art, previously published methods on these instances. Analysis of the branching strategy developed is presented to provide further insights. All the source code for the algorithms presented has been made available on-line for reproducibility of results and to assist other researchers

    A time predefined variable depth search for nurse rostering

    Get PDF
    This paper presents a variable depth search for the nurse rostering problem. The algorithm works by chaining together single neighbourhood swaps into more effective compound moves. It achieves this by using heuristics to decide whether to continue extending a chain and which candidates to examine as the next potential link in the chain. Because end users vary in how long they are willing to wait for solutions, a particular goal of this research was to create an algorithm that accepts a user specified computational time limit and uses it effectively. When compared against previously published approaches the results show that the algorithm is very competitive

    Novel Heuristic and Metaheuristic Approaches to the Automated Scheduling of Healthcare Personnel

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    A Hybrid Heuristic Ordering and Variable Neighbourhood Search for the Nurse Rostering Problem

    No full text
    In an attempt to ensure good-quality printouts of our technical reports, from the supplied PDF files, we process to PDF using Acrobat Distiller. We encourage our authors to use outline fonts coupled with embedding of the used subset of all fonts (in either Truetype or Type 1 formats) except for the standard Acrobat typeface families of Times, Helvetica (Arial), Courier and Symbol. In the case of papers prepared using TEX or LATEX we endeavour to use subsetted Type 1 fonts, supplied by Y&Y Inc., for the Computer Modern, Lucida Bright and Mathtime families, rather than the public-domain Computer Modern bitmapped fonts. Note that the Y&Y font subsets are embedded under a site license issued by Y&Y Inc. For further details of site licensing and purchase of these fonts visi

    フクセイカ / ショウヒンカ サレル イスラーム ノ セイイイブツ ミナミ アジアテキ シュウキョウ ジッセン ノ ポスト モダン ジョウキョウ

    Get PDF
    This paper gives an overview of research work in progress within the COSLE (Collaborative Optimisation in a Shared Logistics Environment) project between the University of Nottingham and Microlise Ltd. This is an R&D project that seeks to develop optimisation technology to enable more efficient collaboration in transportation, particularly real-world operational environments involving pickup and delivery problems. The overall aim of the project is to integrate various optimisation techniques into a framework that facilitates collaboration in a shared freight transport logistics environment with the overall goal of reducing empty mileage
    corecore